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Non-Abelian harmonic oscillators and chiral theories 
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lnstituut voor Theoretische Fysica, Katholieke Universiteit Leuven. Celeshjnenlaan 200D. 
B-3031 Leuven. Belgium 

Received 21 June 1993 

Abstract. We show that a large class of physical theories which has been under intensive 
investigation recently. share the same geometric features in their Hamiltonian formulation. These 
dynamical systems range from harmonic oscillations to WNI-like models and to the Kdv dynamics 
on DiffoS’. To the same class belong also the Hamiltonian systems on groups of maps. 

The common feature of these models are the ‘chid’ equations of motion allowing for 
so-called c h i d  decomposition of the phase space 

1. Introduction 

It is a common impression that many of the geometrical models in field theory share some 
common and universal properties, despite the technical complexity of descriptions of the 
models. For each of these models a specific ‘machinery’ has been developed, making the 
common features less visible. Perhaps the most prominent example of this class is the 
Wess-Zumino-Witten field theory [15]. Both classical Hamiltonian formulation [I I] and 
corresponding quantum theory [5] are being viewed on the grounds of the results which are 
known or are expected to be obtained. This indicates that in spite of the great developments 
achieved recently [3, 4, 61, some hndamental background is missing. 

It is our hope to shed some new light on those questions by showing a large family of 
the models, ranging from harmonic oscillations and free motions to the dynamical systems 
on the groups of maps or groups of diffeomorphisms, and making the common features 
evident. In fact, all those models turn out to be straightforward generalizations of harmonic 
oscillations and free motion. 

Better understanding of the geometrical nature of those models may be very helpful in 
quantization, as for instance it allows one to use the data of the representation theory in a 
more conscious (and efficient) way. 

The starting point for the definition of this class of models is the group structure on the 
corresponding configuration space. The next ingredient is the non-canonical lifting of the 
left and right actions of the group on itself to the co-tangent bundle (the phase space). We 
equip the phase space with a symplectic form which is invariant under the above (lifted) 
actions and allows for their Hamiltonian realization (by momentum mappings). 

The Hamiltonian defining the dynamics is just a quadratic function of these momentum 
mappings, and this guarantees that the equations of motion are ‘chiral’. 

The paper is organized as follows. The first section contains a group-theoretical approach 
to the case of standard harmonic oscillators and free motions. Its power consists of its 
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staightfonvard generalizations to the class of models describing motions on group manifolds; 
the Hamiltonian description of these theories is containea in the next section. 

The third section is devoted to presentation of some more important and more 
complicated examples (like the WAY model and the dynamical model on DiffoS1-which 
leads to chiral KdV equations for the momentum mappings). 

Z Hasiewicz and P Siemion 

In the summary we present briefly the geometrical nature of the chiral splitting. 

2. The harmonic oscillation and free motions 

In accordance with our promise made in the introduction we shall briefly reformulate the 
theory of harmonic oscillators. 

Let us consider the n-dimensional real space as the configuration space of the model. 
This space has a structure of an n-dimensional Abelian (additive) group. 

The left and right actions of this group on itself can be lifted to the action on the phase 
space, but this lifting is not unique. We shall consider the following actions: 

(1) 

(2) 
where ( x , p )  describes the position and momentum and a is a (vector) parameter of 
translation. L and R are linear operators from the group to its dual. The above actions are 
nothing but affine extensions of left and right translations by means of the group co-cycles 

By hand (for the moment) we shall qu ip  the phase space with the following (non- 

(3) 
where ( , ) stands for the pairing and RA and L A  stand for antisymmetric parts of R and L 
with respect to the pairing. The symbol dx should be understood as a vector-valued I-form 
(n-bein). 

g&, p )  := ( x  + a ,  p +  La)  
Q:(x,p) := (X - a ,  p +  Ru) 

@)(a) := L(R)U.  

canonical) symplectic structure: 

f2 := (dp, A & )  + $((RA -LA)&,  A d x )  

It is easy to check that canonical variables have the following Poisson brackets: 

It is also easy to check that the actions ( I )  and ( 2 )  are Hamiltonian and admit the following 
momentum mappings [7]: 

J ' ( X ,  p )  = p + (Rs - LA)x 

J'(x, P) = - p  + (Ls  - RA)x 
where the letters with superscript S denote the symmetric parts of corresponding operators. 
To avoid confusion of the momentum mappings with the canonical momenta we shall call 
the former (abusing the terminology slightly) the chiral momenta. 

Using (4) one can find that 
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Let us notice that in spite of commutativity of the Lie algebra of translations its Hamiltonian 
realization gets centrally extended. Such a realization is sometimes called weakly 
Hamiltonian [lo]. In the next section we shall assume that the symmetric parts of the 
co-cycles vanish, thus making the left and right currents decoupled. 

The Hamiltonian of the theory is simply the sum of the squares of chiral momenta: 

'H := i [ ( J ' .  J ' )  + ( J ' ,  J')] (12) 

where ( , ) stands for the Euclidean scalar product. A straightforward calculation shows 
that 

dZ 
--x = -$(R' + L')(R + L)x 
dt2 

where r stands for transposition with respect to ( , ). Let us notice that the matrix on the 
RHS of (13) is never positive (as we assumed that ( , ) is Euclidean). This means that 
the second-order equation describes either oscillating (positive eigenvectors) or free (null 
vectors) motions. 

It is easy to verify that the equations of motion for J' and J' generated by (12) are 
d 

--J' = $ ( L  + R).? 
dr 

where Pr is the vector dual to J1*' via ( , ). As we shall see later, they are in precise 
analogy with the equations of motion for chiral currents in the wzw model [6]. This is the 
very reason why we call J', J'  the chiral momenta. 

3. The general case 

We can now proceed to a much more general case: let us assume that the configuration space 
is an arbitrary group manifold G (in particular infinite-dimensional). Moreover, we shall 
assume that the objects we are intended to consider do exist ( even in the infinite-dimensional 
case). This is automatically satisfied in the cases of groups of maps from compact manifolds 
(with the loop groups as a special case corresponding to the wzw theory). 

In order to parametrize the cotangent bundle we shall trivialize the bundle by means of 
the left action of the group. 

The points of the phase space (T'G) are thus described by pairs (8, p) where g E G 
and p E 8'. The left and right action of the group on itself can be lifted to the action on 
the phase space in the following way: 

(16) 

(17) 

@io(g. P) := (gag, P + AdiG'@'(go)) 

@i0(g, P) := (gs;', Adi,,p + 6'ko)) 

%igd = Ad;,b'(gz) + Wgz) 

where 6' and 6' are arbitrary B'-valued group cocycles, i.e. they do satisfy 

(18) 
and Ad* is the co-adjoint action. 

The formulae (16) and (17) are in exact correspondence to those of (1),(2). They do 
not look symmetrical because we are using the left trivialization. If we used the right 
trivialization instead, the non-locality would appear in the expression for W .  
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The canonical symplectic structure of the cotangent bundle is given by the differential 
of the Liouville form: 

h2 := dor where LL := ( p .  g-'dg) (19) 
and obviously the pairing is evaluated in B-the space of values of the canonical left- 
invariant form g-'dg. 

It is not difficult to check that neither the Liuoville form nor its differential are invariant 
under (16), (17). This means that the actions (16), (17) cannot be realized in a Hamiltonian 
way. 

In order to obtain an invariant symplectic form one has to add to 51 an additional term 

(20) Qi,, := 51 - (C'(dgg-'), Adgg-') + (C'(g-'dg), Ag-ldg) 
where by Cl*' we understand the derivative of the co-cycles 8'J at the group unity: 

By definition they are linear operators on 9. At this point we make an assumption that 
are ( , )-antisymmetric. In the literature 1131 the co-cycles with antisymmetric derivatives 
are called symplectic. 

Let us notice that we are free to add to (20) an arbiaary closed and both left- and 
right-invariant 2-form on G. On a semi-simple group, however, (contrary to the Abelian 
case considered in section 2) the only one such form is 0 [2]. 

The actions (16), (17) are Hamiltonian with respect to (20) and admit the following 
(weak) momentum mappings: 

J ' k ,  p )  := -Ad;p - 8'(g) (22) 

J'(g,  p )  := p - Adz.,8'(g). (23) 

I J ' ( X ) ,  J ' ( Y ) }  = J ' ( [ X ,  YI) + C+(X, Y) (24) 
( J ' ( X ) ,  J ' (Y ) }  = J ' ( [ X ,  Y]) - C + ( X .  Y) (25) 

I J ' ( X ) ,  J ' (Y ) )  = 0 (26) 

The Poisson algebra of (22) and (23) with respect to Qj,, has the following form: 

where 

C*(X, Y) := CYX, Y )  rt C'(X,  Y) 
C'J(X, Y )  := (P(X), Y) 

and C',' is a derivative of a respective co-cycle as in (20). 
Notice that only the sum of the cocycles matters for the central extensions of the 

Lie algebras of left and right translations. Let us comment briefly. If one starts from a 
Lagrangian formulation of a theory, Like in the wzw models, the canonical momentum is 
given by the (dual of) velocity g-'g. This is equivalent to choosing a trivialization in which 
0' = Or (C- = 0). However, on the grounds of canonical analysis C- can take an arbitrary 
value, depending on the way one trivializes the cotangent bundle (i.e. on coordinates). 

In order to induce the dynamics let us introduce the following quadratic Hamiltonian: 

(29) 
where K is some quadratic form on 4'. If we assume that K is Ad'-invariant, then (29) 
together with (20) give the following equations of motion: 

'H := + ( K ( J ' ,  J') + K ( J ' ,  J')) 
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where 

E* = E1 * Er (32) 

and .?J is the K-dual of J'.'. 
These equations we shall call chiral, because in the case of G being a loop group they 

are precisely the equations of motion for the chiral currents in the wzw theory (see below). 
The equations of motion for a group point are simple: 

whereas for the canonical momenta one has: 
d - p  = - i ( a d ; , p  + Er(?) + Adi-tE'(.f')) 
df (34) 

(35) 

The equations (33). (35) seem to be difficult to solve explicitly and in any case are much 
more complicated than (30). (31). On the other hand one can observe that the Hamiltonian 
is in fact a collective one in the sense of [7], i.e. it is a pull-back of a function on B' x G* 
by the chral momenta (22). (U). This fact has profound geometric consequences and we 
shall shed some light upon it in one of the following sections. 

= - T(zr(e 1 I (g -I )) + zl(er(g-% - E - ( P )  + [el(g-*), er(g-9 - Z P I )  . 

4. Examples 

To illustrate the theory let us describe briefly some examples. 

4.1. The case of anjinite-dimensional Lie gmup 

As the first instance one can consider a particle moving on a semi-simple Lie group manifold. 
In this case aU co-cycles are tivial 121, i.e. of the form 

(36) $'(g) - p l , f  pl.r E B* 

and then 

Cl.' = ad~.,dpp'.r. 

The invariant symplectic form is simply 

(37) 

ainv dct + (p' ,  dgg-' A dgg-') - (p',  g-ldg Ag-ldg). (38) 

The equations of motion generated by the Hamiltonian of (29)  are analogous to the 
equations of a particle moving in a magnetic-like field of strength p+. The equations 
of motion (33), (35) can be solved explicitly on any semi-simple Lie group 1181, and by 
'explicitly' we do not mean the time-ordered integrals, but rather analytical expressions 
depending on time and initial data (position and momentum). The trick in solving the 
equations consists in the proper use of chiral factorization (see below). In particular, for 
p+ = 0 they describe the free motion (along the big circles for the compact G) as in 191. 
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4.2. Loop groups and wzw 
Another example is given by the configuration space being the loop group CG. In this case, 
since the group is infinite-dimensional, we should from the very beginning extract from 
Lp the smooth part 1121 by identifying it with CG via the non-degenerate form on the Lie 
algebra CG, defined as follows: 

Z Hasiewicz and P Siem'on 

(39) 

where K is an Ad-invariant form on G. In this case we will take non-trivial co-cycles on 
LG: 

1 %  
K(X, Y )  = z;;i UX(o) .  Y(u))du 

and then 

The chiral currents do satisfy the following Poisson comutation relations: 

which are easily recognized as the affine algebras with underlying Lie algebra 9. 
By introducing the chiral derivatives 

a l := - - i - (k l+P)K a i  a 
at 2 

we can write the chiral equations of motion as 

a + Y  = o = a - ' .  
The chiral derivatives (44) one can get in a standard form by appropriate redefinition of the 
time variable or equivalent rescaling of the Hamiltonian. 

Similarly one could introduce the chiral dynamics on an arbitrary group of maps MG, 
but this time the co-cycle would not be invariant under the group of diffeomorphisms of M. 
In fact all the co-cycles are defined by the 1-cycles on M in this case. Such models would 
be of considerable physical importance as they could describe the motions i n  the presence 
of monopole-like singularities in M. 

4.3. DiffoS' and KdV 

As another example let us consider G = DiffOSl-the group of orientation-preserving 
diffeomorphisms of SI. The tangent space at identity is then the space of vector fields on 
SI 1161: 

(46) 

and the space of smooth moments can be identified with the space of quadratic differentials 

(47) 

d 
= f(u)- d u  V = E,jG 3 where U is a coordinate on SI 

V' = T:Gsmooth 3 p = p(o)du €3 do . 
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The pairing is defined as contraction, and then integrating over S' ,  
2n 

( P .  t) = 1 p@)F(o)dU 

and is clearly invariant under reparametrizations of S ' .  
The main new feature is, however, the lack of a both left- and right-invariant form on 

V .  This means that one has to be very careful about whether one is working in V or in 
V', contrary to the case of a Lie group, where the identification between L7 and 0' defined 
by K allows for some carelessness in this respect. 

Out of many non-invariant quadratic forms on V' let us choose the simplest one: 

(48) 
0 

zlr 
. K ( P ,  4) = p(u)q(u)du V P ,  4 E V ' .  (49) 

K can be equivalently considered to be a mapping 

(50) 

The Hamiltonian defined as in (29) is not Ad-invariant, as it is defined by a non-invariant 
form (49). 

a 
au 

K : v* 3 p H $ = p ( u ) -  E v .  

Now we have to choose 0' and 6". The non-trivial co-cycle is given by [19]: 

e(@) = Ad;S(@) @ E DiffoS' (51) 
where S is the Schwarzian: 

and the primes denote differentiation. As in general this is the sum 6'' + 6" that is relevant 
for the dynamics, let us take 0"' 0. 

The derivative of 6' is 

X ( q )  = q(u)'"du @du Vq E V (53) 
and the 2-form C is easily seen to be the Gel'fand-Fuks co-cycle [ZO]: 

Now let us calculate the co-adjoint action of V on V": 

(ad;p. v) := 

adip = (Wu)'p(u)  + F(u)p(u)')du 0 d o .  

ptv, 11 = 1, (2t(a)'p(o) + Ha)p(a)')v(U)du (55) 

and as this is satisfied for any q E V ,  we have 

(56) 

(57) 

In particular for any p E V" 

ad>p = 3p(u)p(u)'du @du # 0 (!!!). 
This is a consequence of K being non-invariant. 

The equation of motion for the right chiral momentum J' is again 

but this time the last term does not vanish (compare (31)). In terms of functions this reads 

jr+~(3J'(J')'+(.lr)'") = O  (59) 
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which is nothing but the equation of Korteweg-de Vries. 
Similarly for the left momentum we get 

d 1 1 1  - J' = -Z(.f') + -ad>, J dt 2 2 
or in the coordinates, 

j' - f(3J'(J1)'+ (J')'") = O .  (61) 
Comparing (59) and (61) with the case of loops (45) we see that the chiral equation has been 
replaced by higher equations of KdV hierarchy. The equations are not linear any longer, but 
the nonlinearity is in a sense 'minimal', as the equations of KdV are completely solvable. 
The nonlinear terms have their origin precisely in the non-invariance of the Hamiltonian. 

5. Concluding remarks 

In order to summarize the presented formulation and the examples we shall make some 
remarks about the underlying geometry. 

Let us go back to the Abelian case considered in section 2. The crucial object there is 
the matrix L +R. This matrix is in general non-invertible (as we have seen in section 3, it is 
generically antisymmetric) and therefore the cofiguration space splits into its null subspace 
and the subspace Minven on which L + R is invertible. From (7) and (8) one immediately 
sees that knowing J' and J' it is possible to recover the information about position up to 
an arbitrary translation along the null space. 

On the other hand, from the time evolution of chiral momenta (14), (15) it is clear that 
it is precisely the restriction to T'MinVen where we observe oscillations, while the motion in 
the complementary space is free. Therefore we can effectively describe the phase space by 
the chiral momenta plus initial position and velocity in the null sector. In three dimensions 
it has a nice interpretation as decomposition into left and right circular polarization. 

Let us now discuss the general case. As we have already noticed, the Hamiltonian is a 
pull-back of a function on 8' x G' by the chiral momenta (23, (23). This means that one 
can try to describe the motion in terms of 8'-valued momenta as their equations of motion 
are much simpler. Thus one should consider the image of T'G in 8' x 8' under the map 

(62) 
From the definitions (Z), (23) it follows that the chiral momenta are not independent, or 
to be more precise, 

(63) 

I J : = J ' x - J .  

-J ' (g ,  p )  = Ad;(J'(g, p ) )  +e*(g) 

i.e. they are on the same orbit of the affine action defined by the co-cycle e+: 
d+(g) =Ad; + S+(g). (64) 

Therefore the image of T'G under (62) is precisely the fibred product defined by projection 
n on the space of affine orbits: 

(65) 
where II assigns to each element 5 E 8' its conjugacy class with respect to the action Ata+. 
It is clear that the point in a fibred product contains less information about the system than 
a point in T'G. In order to see what we have lost let us look at the fibre of J over the 
point (5 ,  e') E G' xz 8.. The fibre is clearly isomorphic to the affine stabilizer subgroup 
of 5 (or any other point conjugated with e by A+). 

J ( T * G )  = G' xK g' 



Non-Abelian harmonic oscillators 3509 

Let W be the set of conjugacy classes (affine orbits). Defining the projection nr := n o J  

(66) 
where H is the affine stabilizer of some in class r .  Obviously H as a subgroup depends 
on the choice of q (r fixes it up to an isomorphism only). One can thus immediatly see 
the possible obstructions for the fibres to fit together into the structure of a smooth bundle 
over W.  However, the situation is not hopeless because in many interesting cases the 
mapping I defines a trivial fibration over the open subset WO of W.  The inverse image 
n;'(W,) =: (T*G), is called the set of regular points. 

In the case of compact Lie groups or loop group the space WO can be identified with 
the interior of.the Weyl Chamber in f* , where t is the Lie algebra of some maximal torus 
of G .  Then the layers of (66) fit together to give the principal bundle structure 

(67) 

of T'G on W one can see that for any point r E W 

z ; ' ( r )  Z H x G / H  x G / H  

H - (T'G), (G' x, G* N GJH x G / H )  & W O .  
This is not the end of the story, because the above structure factorizes. Let us consider two 
copies of the manifold WO x G .  endowed with the following symplectic siructures: 

QI = d h ,  g;'dgd + f{E+(g;'dgd, g;'dgd 

Q, = d h ,  d g d )  + A(x+(dgrg;'), dag;') 

(T'G,, Q) N (P. !?lt)/(rl- r, = 0)  

(68) 

(69) 

and let P = f i  x P, be a symplectic manifold with the form !?l = Q, - 0,. Then 

(70) 
where / denotes the symplectic reduction by the set of (first-class) constraints. We call the 
above statement the chiral splitting because PI,, describe the dynamics of chiral momenta. 
The elements gl,r correspond to vertex operators of WZW. 

In the particular case of LG the form Ql has the following structure: 

4 = d(r1,g;Idgj) + f(k' + k')((u-ldu)', u-ldu) + d(r1, Ad,;'u-'du) (71) 

where 81 is a constant loop (the zero mode) and U is an element of the group of loops based 
at the unity. The second term in Qi describes the canonical symplectic structure on the 
manifold of based loops. It is known that this manifold admits a complex structure which 
is compatible with the symplectic one [ 121 and therefore it defines the Kaehler structure. 
This property is very important for quantization. From (71) one can see that kinematically 
the chiral sector splits into so-called zeromodes and higher, oscillating modes, described 
by based loops. The zero-mode dynamics is nothing but a chiral part of free motion of a 
'point particle' on a group manifold [9]. The third term of (71) couples the zeromodes 
to the oscillating ones. Its presence forces the so-called screening, i.e. it sets the upper 
limit for values of the variable rl in terms of kl + !+ It is only with this restriction that 
the symplectic form is non-degenerate. Because rl labels the representations of the current 
algebra the above condition restricts the 'spin' content of the theory. The parametrization 
of the chiral sectors used above is slightly different from those used in [3] and [6]. It 
is the initial conditions that are used to parametrize the phase space rather than 'right-' 
and 'left-movers'. Of course, there is a relation between both descriptions, but the detailed 
presentation of it is far beyond the scope of this paper. The only comment we can make here 
is that the parametrization used in this paper corresponds to the restriction of monodromy 
of the chiral solution to the maximal torus. The restricted chiral sectors are sufficient to 
describe a general solution of wzw. 
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It would be interesting to perform a similar analysis for the case of DiffoS'. In this case 
the structure of the orbit space is a little bit more complicated [16, 171, but still controllable. 
This gives one some hope that the canonical quantization of the corresponding theory can 
be performed. We shall return to this issue in a future paper, as well as to the question of 
the canonical geometry of groups of maps. 
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